Archivio blog
-
▼
2011
(228)
-
▼
dicembre
(14)
- Alimentazione, Donna29/12/2011 - intolleranze e di...
- Ecco la dieta per il giorno critico, il 27 dicembr...
- Fuori pastoI trucchi (scientifici) per resistere a...
- per storie: archeologiaI carboidrati complessi: in...
- I PERICOLI DI FUOCHI D'ARTIFICIO, LUCI DELL'ALBERO...
- LO SPECIALISTA RISPONDEPer quali motivi può «andar...
- Kamut: un mito da sfatare Massimo Angelini, tratto...
- Medicina01/12/2011 - includere il pesce nella diet...
- Medicina12/12/2011 - poche ore di luce e ricordi d...
- Egg Timer: Separate Biological Clocks Govern Femal...
- Ritalin and Other Cognitive-Enhancing Drugs Probab...
- geriatriaLa «sindrome da frigo vuoto»mette in cris...
- Il mito dell’AlzheimerTratto dal libro: “Il mito d...
- Le stranezze culinarie di alcuni vegetarianiFranco...
-
▼
dicembre
(14)
Benvenuti in PARLIAMO DI SALUTE
Vogliamo informare per orientare nel campo della salute e del benessere della persona. Ponete domande,vi daremo risposte attraverso l'esperienza degli esperti.
Leggete i nostri articoli per entrare e conoscere le ultime novità internazionali che riguardano i progressi della medicina.
Sarà affrontato anche il campo delle medicine alternative e della psicoanalisi.
Pubblicheremo inoltre interessanti articoli di storia della medicina.
Leggete i nostri articoli per entrare e conoscere le ultime novità internazionali che riguardano i progressi della medicina.
Sarà affrontato anche il campo delle medicine alternative e della psicoanalisi.
Pubblicheremo inoltre interessanti articoli di storia della medicina.
8 dic 2011
Egg Timer: Separate Biological Clocks Govern Female Fertility and Life Span
A new study finds that separate sets of genes control bodily and reproductive aging processes
By Carrie Arnold | December 5, 2011
As a biological feat, it was the equivalent of an 80-year-old woman giving birth: Because of a mutation, Coleen Murphy's worms were still fertile and laying eggs right up until the end of their lives. The worms' impressive performance adds weight to the evidence that the biological clock that rules reproduction is separate from the one that grants us the traditional threescore and 10.
In a new study, Murphy, a molecular biologist at Princeton University, showed that long-lived bodily, or somatic, cells in Caenorhabditis elegans, a one-millimeter nematode commonly used as a model for aging studies in labs, activate genetic pathways completely separate from those found in long-lived egg, or oocyte, cells. Murphy presented her work at the American Society for Cell Biology in Denver on December 5.
"Investigators of aging in humans have been interested in studying somatic aging, and they've been interested in looking at the effects of age on fertility, but, in general, there haven't been any people trying to tie those two lines of investigation together," saysTerry Hassold, a reproductive biologist at Washington State University in Pullman who was not involved in the study. "That's an extremely important aspect of Murphy’' work, because it will help those of us that study human reproduction think about it in a different way."
Longevity researchers have long turned to C. elegans to learn more about the human aging process. Although it may seem unlikely that the 959-celled roundworms have much in common with humans, many genetic pathways were conserved during the course of evolution. As a result, many of the genes and proteins that regulate various processes are almost identical in C. elegans, mice (another animal model) and humans. Their reproductive cycles are similar, too. Middle-aged human females and C. elegans (which live two- to three-weeks) generally show few outward signs of senescence halfway through their lives. The oocytes of both the women and the worms, however, age much more rapidly, effectively ending the ability to reproduce during the second half of life, a relatively unique phenomenon in the animal kingdom.
Most mutations in C. elegans affect both life span and reproduction, which had led scientists to believe that body cells and female reproductive cells aged according to the same clock. But in Murphy's worms, a mutation in a gene known as transforming growth factor beta (TGF-β) enabled the production of high-quality eggs right up to the day they died.
While completing her postdoc, Murphy began to study C. elegans mutants that could live and reproduce twice as long as normal worms. These long-lived worms had mutations that decreased the production of a protein known as insulinlike growth factor 1 (IGF-1), which helps drive cellular growth and division. The TGF-β mutants that Murphy also studied could reproduce far longer than wild-type (nonmutant) worms—but, unlike the IGF-1 mutants, they didn’t actually live any longer. Their oocytes might have been young, but their bodies were decrepit.
"Worms, like humans, have to be in good enough shape to actually be pregnant and have kids successfully. If they're not in good enough shape, then they die while they’re trying to lay the eggs or give birth," Murphy says. "I think there are more parallels to human reproduction and the post-reproductive life span than we anticipated."
Iscriviti a:
Commenti sul post (Atom)
Nessun commento:
Posta un commento